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ABSTRACT 

 
A code package called UNÌC is currently under development at Argonne (Argonne National 
Laboratory). This new code package is focused on high fidelity solutions for nuclear reactor plant 
operations. The focus of this paper is the development of a spherical harmonics method used to 
solve the neutron transport equation. This new code, called PNFE, is just one of the components of 
UNÌC. PNFE is targeted for use on massively parallel platforms using the PETSc library developed 
at ANL. In this paper, an overview of the theory behind the spherical harmonics method is given 
along with some results obtained with a parallel implementation of the code. 
 
Key Words: neutronics, spherical harmonics, finite element, unstructured mesh 

 
 

1. INTRODUCTION 
 
Recent work at Argonne has been focused on the development of a new high-fidelity system of 
software tools that model the overall nuclear plant behavior.1 Within this framework, this paper 
focuses on a specific method implemented to solve the neutron transport equation. At present, 
there are several notable methods used in reactor analysis and other more general transport 
applications (shielding, deep well logging).2 The most commonly known ones include: diffusion 
based nodal methods, discrete ordinates structured and unstructured methods, finite element 
based spherical harmonics, combinatorial geometry based collision probability and 
characteristics. There exists substantial experience with all of these methods in the nuclear 
industry and thus each individual method has well known advantages and disadvantages when 
compared with the other methods. As a consequence, these methods have been implemented 
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such that they are best utilized for specific problems found in the nuclear industry (discrete 
ordinates for shielding, nodal methods for reactor physics analysis, etc…).  
 
One of the most well used methods currently employed for reactor analysis is the diffusion 
approximation. This approximation is typically employed at the whole-core level using assembly 
level homogenized cross sections in a nodal framework. To reproduce this capability, i.e. be able 
to rapidly solve problems based upon homogenized assemblies, we have focused the initial 
development in UNÌC on a second-order spherical harmonics method. The spherical harmonics 
method2 implements a continuous set of orthogonal functions to approximate the angular 
variable in the neutron transport equation and is generally well known in the nuclear industry. It 
is typically posed in either a finite element or finite difference spatial approximation, where both 
formulations lead to a large coupled system of equations for the angular approximation. The 
methods foremost weakness is that any transport problem which has discontinuities in the 
angular flux can require a high number of spherical harmonics. As the angular order increases to 
meet the discontinuity, the method becomes numerical inferior to other methodologies such as 
discrete ordinates or discontinuous angular finite elements. However, its use for solving 
homogenous problems without concern for ray effects has proven quite useful for reactor 
analysis. Since solving explicit full core geometries with acceptable space, angle, and energy 
resolution is computationally expensive, we can expect that some form of homogenization will 
still be required in the near term and thus the spherical harmonics methodology is quite useful. In 
general, however, we desire the ability to handle a wide variety of reactor problems and thus 
development of a general second-order solver appears to be a good complementary capability to 
the first-order methods currently under study in the UNÌC framework. 
 

2. SPHERICAL HARMONIC METHOD 
 
 The neutron transport methods for this work with the steady state first-order, multi-group 
equation2 
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includes fission sources as well as volumetric and boundary fixed sources. This equation can be 
simplified by merging all but the within group scattering (

  g = g ' ) into the group source to obtain 
the within group form of the transport equation 
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2.1. Even Parity Transformation 
 
Next, we transform this equation into an even parity form which is standard approach for second-
order methods. First, the angular flux is split into even and odd parity components given by 
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where + denotes even parity and – denotes odd parity.  The even and odd parity components of 
the flux have the following properties,  
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where the function 
   
!

g
(
!
r )  represents the group scalar flux. Inserting Eq. (4) into Eq. (2) yields 
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This equation leads to the first-order even and odd parity transport equations: 
Even Parity 
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Odd Parity
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The new even- and odd-parity sources in Eqs. (6) and (7), along with the within group scattering 
kernels are defined as 
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Note that the scattering cross sections are assumed to be expanded in a set of Legendre 
polynomials. 
 
For our studies we make use of the second-order even parity transport equation and therefore 
solve the odd parity transport equation, Eq. (7), for 
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The spherical harmonics approximation is relatively unique compared to the other methods of 
treating the angular variable in that the within group anisotropic scattering moments can be 
directly solved for, thereby eliminating within group scattering iterations. Since the spherical 
harmonics method is the primary focus of this work, the actual steps required to achieve this 
transformation are displayed.  
 
First, the even and odd parity flux are expanded into orthonormal spherical harmonics such that 
we can write 
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where 
  
Y
±

(!̂)  represent vectors of even- and odd-parity spherical harmonics. We can weight Eq. 
(7) with the an odd parity set of spherical harmonics and integrate over the angular domain to 
obtain the following expression 
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Each term in Eq. (13) can be simplified as shown in Eqs. (14) through (17). 

 
     

d!Y
"

(!̂)!̂ #
!
$Y

+

T (!̂)!
g

+ (
!
r ) =% V

T #
!
$!

g

+ (
!
r )  (14) 

 
     

d!Y
"

(!̂)#
t ,g

(
!
r )Y

"

T (!̂)!
g

" (
!
r )$ = #

t ,g
(
!
r )!

g

" (
!
r )  (15) 

 

      

d!Y
"

(!̂)W
g

" (
!
r ,!̂)# = d!Y

"
(!̂) $

s,g%g ,m

" (
!
r )P

m

" (!̂ & !̂ ')'
g

" (
!
r ,!̂ ')d!̂ '#

m

(#
= d!Y

"
(!̂) Y

"
T (!̂)!

s,g%g

" (
!
r )Y

"
(!̂ ')'

g

" (
!
r ,!̂ ')d!̂ '##

=!
s,g%g

" (
!
r )!

g

" (
!
r )

 (16) 

 
    

d!Y
"

(!̂)S
g

" (
!
r ,!̂)# = d!Y

"
(!̂)Y

"

T (!̂)S
g

" (
!
r )# = S

g

" (
!
r )  (17) 

    
!

s,g!g

" (
!
r ) is an angular identity like matrix with the diagonal elements corresponding to the 

Legendre moments of the scattering kernel (properly aligned with the set of spherical 
harmonics). Combining these expressions with Eq. (13) yields Eq. (18). 
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Equation (18) is now solved for the odd parity flux as shown in Eq. (19). 
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where the components of the new cross section vector 
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We can multiply Eq. (19) by the set of odd parity functions to obtain 
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We can now substitute this form into Eq. (6) to obtain the second-order even-parity form of the 
transport equation. 

2.2. Weak Form of the Even Parity Equation 
 
To solve for the even-parity flux, we weight Eq. (6) with a set of even-parity functions 
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and integrate over space and angle. This gives the weak form of the even-parity transport 
equation 
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where the integration is over the volume of the domain. Applying the divergence theorem, we 
can modify the derivative of the odd-parity flux to obtain 
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where   n̂  is the outward normal from the domain surface,! .  
 
The incoming angular flux, 
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Modified natural boundary conditions can be obtained by forming the weighted residuals 

 

   

d! d"
"̂#n̂<0

$!$ %+ (
"
r ,"̂) &

!
+ (
"
r ,"̂) +&

!
' (
"
r ,"̂) '&

!
(
"
r ,"̂)( ) = 0

 

(25) 

Using angular parity arguments, we can take the boundary term from Eq. (23) and write 
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Substitution of Eq. (26) into Eq. (23) yields the primal form of the second-order equation with 
modified natural boundary conditions 
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Equations (21), (23), and (27) form the basic pieces of the second-order even parity formulation 
we want to implement. We therefore introduce a functional notation for the unknown quantities 
of Eq. (23) 
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By inspection, we know that further substitution of Eq. (26) into Eq. (28) would yield a similar 
functional where the unknown odd parity boundary flux is replaced by the component of the 
known incoming angular flux. Similarly, substitution of Eq. (21) will yield a functional whose 
only unknown is the internal even parity angular flux. 

2.3. Finite Element Implementation 
 
We continue by investigating the spatial approximation, designated as the finite element method. 
In the finite element method, the problem domain is subdivided using a finite element mesh as 
seen in Figure 1 where the global summation of Eq. (29) is defined in terms of the element 
contributions given by Eq. (30). 
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Figure 1. Imposition of a Triangular Finite Element Mesh for a Fast Reactor Fuel Pin 
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Each finite element in the mesh is defined through the use of spatial vertex points (typically 
called nodes in the finite element literature) and the cross sections within each element are 
assumed to be spatially flat.3 The imposition of a continuous finite element approximation to the 
even parity angular flux and the even parity weighting function eliminates the general boundary 
term from the system of equations for adjoining elements. As a consequence, the surface term in 
Eq. (30) only exists for those elements that lie along the outer problem boundary. 

2.4. Combined Space-Angle Approximations 
 
The definition of the spherical harmonic functions,2 examples of which are shown in Figure 2, 
are not included here for brevity. The focus for this work is on the use of the sine and cosine 
series defined as 
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What is unique about Eq. (31) is that the functions 
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Figure 2. Some Example Spherical Harmonic Trial Functions 
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Equations (21), (27), (32), (33) and (34) can be substituted into Eq. (30) to obtain the following 
functional 
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where the boundary condition term, which only exists for those elements along the problem 
domain boundary, is defined as: 
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This system of equations can be compacted by defining the following angular matrices. 
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T (!̂)d!#   (37) 

  
I
±
= Y

±
(!̂)Y

±

T (!̂)d!"   (38) 
Substituting these matrix definitions into Eq. (35) yields
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+
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!
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+

T (
!
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+ !
g
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!
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+

T (
!
r )I

+
S

g

+ (
!
r )dV)

&
!
'"

+

T (
!
r ) (V "!

s,g

& (
!
r )S

g

& (
!
r )dV) + BC

g

, (39) 
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The application of the finite element approximation to the flux, source, and weighting function 
representations results in 
 

     
!

g

± (
!
r ,"̂) =Y

±

T ("̂) # L
e

T (
!
r ) "!

g ,e

±  (40) 

 
     
S

g

± (
!
r ,!) =Y

±

T (!̂) " L
e

T (
!
r ) "!

g ,e

±  (41) 

 
    
!

+ (
!
r ,"̂) =Y

+

T ("̂) # L
e

T (
!
r )  (42) 

where !  represents a tensor product of the spatial and angular vector of trial functions. 
Substitution of Eqs. (40) through (42) into Eq. (39) for a given element yields the following 
spatial matrices 
 

   
Pe

K ,L
=

!
!

K
L

e
(
!
r )
!
!

L
L

e

T (
!
r )" dV

e
, (43) 

 
   
Ue

K
= L

e
(
!
r )
!
!

K
L

e

T (
!
r )" dV

e
, (44) 

and 
 

   
Fe = L

e
(
!
r )L

e
(
!
r )dV

e! . (45) 

Introducing these equations into Eq. (39) yields the following set of algebraic equations for each 
element 

 

      

!
e
!!

g ,e

+"
#

$
% = & V

K
!!

s,g

&
V

L

T
' Pe

K ,L

K ,L

( !!
g ,e

+
+ )
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I
+
' Fe

!!
g ,e

+

&!
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+
' Fe

!!
g ,e

+ & I
+
' Fe

!S
g ,e

+ & V
K
!!

s,g

&
'Ue

K

T

K

( !S
g ,e

&
+ BC

g ,e

. (46) 

Equation 46 can further be simplified by defining the matrices and vectors 

     

A
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= ! V
K
!!

s,g

!
V

L

T
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I
+
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+
" Fe , (47) 

    
!s
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+
= I

+
! Fe

!S
g ,e

+ ,  (48) 

     

!s
g ,e

!
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K
!!

s,g

!
"Ue

K

T

K

# !S
g ,e

! ,  (49) 

to obtain  

     
!

e
!!

g ,e

+"
#

$
% = A

g ,e
!!

g ,e

+ & !s
g ,e

+ & !s
g ,e

&
+ BC

g ,e
.  (50) 

 
3. BENCHMARK CALCULATIONS AND RESULTS 

 
As mentioned, the preceding second-order formulation has been implemented using a spherical 
harmonics approximation of the angular variable. Clearly for a large spatial domain and high-
order angular approximation, the matrix resulting from Eqs. (29) and (50) cannot be directly 
inverted due to the computational burden and storage expense. As a consequence, we have made 
use of the conjugate gradient solver available in the PETSc (Portable, Extensible Toolkit for 
Scientific Computation) package developed at ANL.5 PETSc provides a variety of linear and 
nonlinear solvers for partial differential equations (PDE) on high-performance parallel 
computing platforms. It provides many types of preconditioners that are commonly used to 
improve the convergence rate of linear iterative methods. So far we have experimented with 
incomplete Cholesky factorization (with various fill levels) and successive over relaxation 
preconditioners. At this stage, the existing set of PETSc preconditioners does not take full 
advantage of the structure of the matrix (especially when higher-order angular approximations 
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are implemented). We are therefore investigating some custom implementations for the 
preconditioners of interest in PETSc. 

3.1. Takeda 4 Benchmark 
 
The first benchmark solved is the fourth Takeda benchmark, the details of which can be found in 
reference 7. This benchmark is used to check the general solution capability of transport methods 
since it requires a relatively low angular approximation and contains virtually no heterogeneity. 
The geometrical 1/6 symmetry representation is given in Figure 3 along with the mesh that 
displayed full spatial convergence on the control rod withdrawn problem. The cross sections 
were provided and reference solutions were obtained using the VIM Monte Carlo code8 in 
multigroup mode. In this benchmark, three configurations were specified where the control rod is 
inserted fully, half, or removed. Figure 4 shows the four group flux solutions for the control rod 
half inserted problem. The VIM Monte Carlo solution for the full inserted control rod is 0.88001 
± 0.00038, for the half inserted control rod is 0.9834 ± 0.00039, and for the withdrawn control 
rod is 1.09515 ± 0.00040.  
 

 
Figure 3. Fourth Takeda Benchmark Geometry and Mesh 

 
The relatively large inaccuracy in these results limits the accuracy verification of the new code 
and thus additional, comparative solutions were obtained using the nodal spherical harmonics 
code VARIANT. Table I gives the solutions obtained using the VARIANT code and the PNFE 
component of UNÌC. All of these calculations were completed on the Jazz cluster at Argonne 
using 16 to 64 processors. From our space-angle convergence analysis, we believe the solutions 
obtained with PNFE and VARIANT codes are good although additional spatial refinement might 
be necessary in both codes to get agreement. There is also some residual error in the Monte Carlo 
solutions likely due to insufficient fission source convergence. The P7 flux solution obtained 
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using the PNFE solution on the half inserted control rod configuration is given at the bottom of 
Figure 4 (first through fourth energy group fluxes are given left to right). 
 
 

 
Figure 4. Fourth Takeda Benchmark Half Inserted Flux Results 

 
Table I. Eigenvalue Solutions for the Takeda #4 Benchmark 

Fully Inserted Half Inserted Withdrawn Angular 
Order PNFE VARIANT PNFE VARIANT PNFE VARIANT 

1 0.85161 0.85423 0.95757 0.96063 1.07335 1.07543 
3 0.87554 0.87749 0.98010 0.98195 1.09305 1.09441 
5 0.87761 0.87949 0.98188 0.98364 1.09444 1.09577 
7 0.87800 0.87992 0.98229 0.98405 1.09481 1.09614 
9 0.87811 0.88003 0.98241 0.98404 1.09493 1.09628 
11 0.87814 0.88009 0.98245 0.98415 1.09498 1.09636 

 Error (pcm) Error (pcm) Error (pcm) 
1 -2840 -2578 -2583 -2277 -2180 -1972 
3 -447 -252 -330 -145 -210 -74 
5 -240 -52 -152 24 -71 62 
7 -201 -9 -111 65 -34 99 
9 -190 2 -99 64 -22 113 
11 -187 8 -95 75 -17 121 

 

3.2. ABTR Single Pin Benchmark 
 
A more difficult benchmark derived from the advanced burner test reactor (ABTR) design 
currently being studied10 was chosen as the other benchmark. Figure 5 describes the geometrical 
layout of the benchmark geometry; more specific detail on the ABTR, specifically the 
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compositions, can be found in reference 10. Reflected boundary conditions are assumed in the 
radial plane and vacuum boundary conditions are assumed at the upper and lower boundaries. 
Note that a companion paper presents a more complicated geometrical layout used for analysis of 
a thermal hydraulic coupling simulation. The purpose of this benchmark was to investigate the 
impact of homogenization on the fast reactor system and to determine what level of geometrical 
representation is necessary for an assembly and thus the full core problem. A five energy group 
structure was implemented for this study. Cross sections were generated at nominal fuel 
temperatures using the MC2-2 cross section generation code.11 The model utilized also reduced 
the axial domain of interest in Figure 5 from 3.4568 m to 1.2698 m about the center of the active 
core such that the unimportant neutronic portions of the domain are eliminated for this study. 
The wire wrap is also smeared into the coolant region (~3% of the total volume) for simplicity in 
the benchmark. 
 

 
Figure 5. ABTR Single Pin Geometry and Radial Finite Element Mesh 

 
The reference solution was obtained with the Monte Carlo code MCNP12 in multigroup mode 
using the set of multigroup cross sections derived from MC2-2. With the above stated 
modifications to the geometry, MCNP reported an eigenvalue of 1.57268 ± 0.00008 for the 
heterogeneous calculation. Table II shows the solutions using the PNFE code using the explicit 
geometry of Figure 5 and two radial homogenization schemes. A very fine spatial mesh was 
chosen for all three problems and the comparative results of a coarser mesh are given for the 
explicit geometry and first homogenization scheme (mesh not shown for brevity). In the first 
homogenization scheme, the cladding and coolant compositions were homogenized together 
without flux weighting. The other homogenization scheme smears all radial regions together 
effectively defining a one-dimensional geometry. All of these calculations were completed on 

Radius fuel   0.3501 cm 
Radius cladding  0.4024 cm 
Hex cell pitch   0.9134 cm 
Coolant, wire smear 
 
1. Lower axial structure 50.24 cm 
2. Lower reflector  60.30 cm 
3. Height of active core 84.41 cm 
4. Sodium bond region 22.57 cm 
5. Upper gas plenum  98.02 cm 
6. Upper axial structure 30.14 cm 

1 2 3 4 5 6 

3.4568 m 
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the Jazz cluster at Argonne using between 16 and 128 processors. As can be seen, only a narrow 
range of angular approximations were attempted with a significant amount of error still present. 
Our ongoing work has indicated that additional angular refinement is necessary in the 
heterogeneous calculations to match the Monte Carlo solution due to the presence of 
discontinuities in the angular flux at the interface of the fuel cylinder. 
 

Table II. Eigenvalues for the ABTR Benchmark Problem. 

PN 
Explicit 

Geometry 
Homogenized  

Cladding+Coolant 
Completely 

Homogenized 
 Coarse Fine Coarse Fine Fine 
1 1.51661 1.51696 1.54600 1.54633 1.56795 
3 1.54068 1.54127 1.55738 1.55780 1.57004 
5 1.54953 1.55067 1.56097 1.56147 1.57009 
7 1.55408 1.55556 1.56287 1.56346 1.57011 
9 1.55675 1.55852 1.56401 1.56468 1.57012 

11 1.55844  1.56474  1.57013 
 

4. CONCLUSIONS 
 
The development of a second-order solver based on the spherical harmonics method called PNFE 
was introduced and the results of two benchmarks were shown. In general the results obtained 
for these benchmarks were very good within the obvious limitations of the method. The PNFE 
component of the UNÌC code is still in the testing and development phase and thus the problems 
are somewhat limited in size due to serial implementations. At present, we have not fully 
optimized the parallel execution of the method using the PETSc toolkit and thus additional work 
will include both results and detailed timing studies. With time we will migrate from these small 
scale calculations to large scale reactor simulations with thousands of processors. Our short term 
goal is to model the advanced burner test reactor with ~100 energy groups using a pin-cell 
homogenized geometry model. We estimate that this reactor problem will require ~10 million 
spatial degrees of freedom and a P9 angular approximation. 
 
Although it is unlikely that the spherical harmonics code can be relied upon for the explicit 
geometry calculations (discontinuities in the angular flux), there is still a need for a robust solver 
of homogeneous problems, such as the Takeda benchmark, due to the limitations of modern 
computational abilities. Also, this new code provides a path to move from the legacy neutronics 
codes currently used for reactor analysis based upon homogenous assembly calculations to a new 
set of tools under development in the UNÌC framework where such coarse homogenization can 
be avoided if not eliminated entirely. With this capability, the uncertainty associated with 
modeling different reactors along with the use of exotic fuel forms currently proposed can be 
analyzed with greater confidence. Note that this work is complementary to the ongoing 
development of a three-dimensional method of characteristics code also being carried out in the 
UNÌC framework.1 Finally, the additional development of a second-order discrete ordinates or 
discontinuous angular finite element capability can widen the scope of neutron transport 
problems that can be solved using a second-order method. 
 



PNFE Component of the UNÌC code 

 

Joint International Topical Meeting on Mathematics & Computation and  
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, 2007 

13/13 

 

ACKNOWLEDGMENTS 
 
Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of 
Nuclear Energy, under contract DE-AC02-06CH11357. We gratefully acknowledge use of the 
"Jazz cluster" operated by the Laboratory Computing Resource Center at Argonne National 
Laboratory. 
 

REFERENCES 
 
1. G. Palmiotti, et al., “UNÌC: Ultimate Neutronic Investigation Code”, A companion paper in 

Joint International Topical Meeting on Mathematics and Computation, Supercomputing in 
Nuclear Applications, Apr. 15-19, Monterey, California, USA, 2007.  

2. Lewis, E.E., and Miller Jr., W.F., Computational Methods of Neutron Transport.  New York: 
John Wiley & Sons, 1984. 

3. Reddy, J.N., An Introduction to the Finite Element Method, Second Edition. Boston, 
Massachusetts, McGraw-Hill, 1993. 

4. G. Palmiotti, et al., “Status Report on High Fidelity Reactor Simulation,” ANL-AFCI-175, 
2006. 

5. S. Balay, K. R. Buschelman, W. D. Gropp, D. K. Kaushik, M. G. Knepley, L. C. McInnes, 
and B. F. Smith. PETSc home page, (2002). http://www.mcs.anl.gov/petsc. 

6. Amy Henderson, editor “Paraview Guide,” Kitware, Inc. Authors: Squillacote. ISBN 1-
930934-17-3. 

7. T. Takeda and H. Ikeda, “3-D Neutron Transport Benchmarks,” NEACRP-1-300 
OECD/NEA, Organization of Economic Cooperation and Development/Nuclear Energy 
Agency March 1991. 

8. Blomquist, R.N., “VIM- A Continuous Energy Neutronics and Photon Transport Code,” Int. 
Topl. Mtg. Adv. In Mathematics, Computations and Reactor Physics, April 28-May 2, 1992, 
Pittsburgh, PA. 

9. G. Palmiotti, E. E.  Lewis & C. B. Carrico, “VARIANT: VARIational Anisotropic Nodal 
Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation,” Argonne 
National Laboratory ANL-95/40 1995. 

10. Y. I. Chang, P. J. Finck, and C. Grandy, “Advanced Burner Test Reactor Preconceptual 
Design Report,” ANL-ABR-1, ANL-AFCI-173, Sept (2006). 

11. H. Henryson, II, B. J. Toppel, C. G. Stenberg, “MC2-2: A Code to Calculate Fast Neutron 
Spectra and Multigroup Cross Sections,” ANL-8144, June 1976. 

12. Judith F. Briesmeister and XTM. MCNPTM-A General Monte Carlo N-Particle Transport 
Code.  LOS ALAMOS National Laboratory LA-12625-M, March 1997. 


